
Lessons Learned From Developing SAWA:
A Situation Awareness Assistant

Christopher J. Matheus

Versatile Information Systems
Framingham, MA USA

cmatheus@vistology.com

Jerzy J. Letkowski
Western New England College

Springfield, MA USA
jletkows@wnec.edu

Mieczyslaw M. Kokar
Northeastern University

Boston, MA USA
kokar@coe.neu.edu

Catherine Call

Versatile Information Systems,
Framingham, MA USA

cdcall@speakeasy.net

 Kenneth Baclawski
Northeastern University

Boston, MA USA
ken@baclawski.com

Michael Hinman

Air Force Research Laboratory
Rome, NY USA

michael.hinman@rl.af.mil

John Salerno
Air Force Research Laboratory

 Rome, NY USA
john.salerno@rl.af.mil

Douglas Boulware
Air Force Research Laboratory

 Rome, NY USA
douglas.boulware@rl.af.mil

Abstract – SAWA is a Situation Awareness Assistant being
developed by Versatile Information Systems, Inc. During the
process of its development several lessons were learned about
advantages and limitations of certain approaches, techniques
and technologies as they are applied to situation awareness.
This paper begins with an overview of SAWA and then focuses
on some of the more significant lessons learned. These include
the pros and cons of leveraging Semantic Web technologies, the
handling of time-varying attributes and the processing of
uncertainty.

Keywords: situation awareness, level-two fusion, ontologies,
formal reasoning, OWL, SWRL.

1 Introduction

The essence of situation awareness lies in the monitoring
of various entities, physical and abstract, as well as
various relations among the entities. Since the properties
of relations, unlike the properties of objects, are not
directly measurable, one needs to have some background
knowledge (such as ontologies and rules) to specify how
to derive the existence and meaning of particular relations.
For instance, in the domain of supply logistics, relations
like "suppliable" or "projected undersupply within 2 days"
need to be systematically specified. Typical relations in a
military context would include relations such as "unit
aggregation" and "composition of the force". The number
of potentially relevant relation types is practically
unlimited. This presents a great challenge to developers of
general-purpose situation awareness systems since it
essentially means that such systems must have the
potential to track any possible relation. In other words, the
relation determination algorithms must be generic, rather
than handcrafted for each special kind of relation.
Furthermore, in order to derive a specific relation one
often needs to access a number of data sources and then

combine (fuse) their inputs. One way to address these
challenges is to use generic reasoning tools, such as those
based on the principles employed by automated theorem
provers. However, to take advantage of this approach all
information must be available in a formally defined
knowledge base.
 At Versatile Information Systems, Inc., we are
developing a collection of flexible ontology-based
information fusion tools needed for identifying and
tracking user-defined relations. These tools collectively
make up our Situation Awareness Assistant (SAWA). The
purpose of SAWA is to permit the offline development of
problem specific domain knowledge and then apply it at
runtime to the fusion and analysis of level-one data.
Domain knowledge is captured in SAWA using formal
ontologies, portions of which are used to represent the
incoming stream of level-one event data. The user controls
the system situation monitoring requirements by
specifying "standing relations", i.e., high-level relations or
queries that the system is to monitor. SAWA provides a
flexible query and monitoring language that can be used to
request information about the current situation, predicted
situations, and request notifications of current or potential
future emergency conditions. In this paper we describe
the structure and capabilities of SAWA and show its use
on examples from the supply logistics domain. In
particular, we show how to develop an appropriate
ontology and associated rules, how SAWA collects and
processes incoming events and how it communicates with
the user. In concluding we summarize some of the more
significant lessons learned from creating SAWA

2 General Approach
We view situation awareness as a fusion problem
involving the identification and monitoring of higher-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Lessons Learned From Developing SAWA: A Situation Awareness
Assistant

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory,Rome,NY,13440

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

order relations among level-one objects. As mentioned in
the introduction, practical solutions to this problem
require user-defined constraints, which we usually
identified with a corpus of knowledge specific to a domain
of interest, otherwise known as domain knowledge. The
use of domain knowledge requires a form of
representation and a means for processing or reasoning
about the knowledge representations. Rather than
developing ad hoc representations we advocate the
leveraging of existing standards. We also believe strongly
in the value of formal representations that can be used in
conjunction with generic yet formal reasoning systems.
Our approach to domain knowledge representation, which
we will describe shortly, is thus premised on use of
standards-based formal representations.
 Even with appropriate domain knowledge the number
of possible relations definable within the domain
knowledge constraints can remain intractable. To further
constrain a situation it is necessary to know something
about the user's specific goals. By knowing more
specifically what the user is looking for, automated
systems can focus attention on just those events and
candidate relations that are relevant. Our process for
relevance reasoning has been reported elsewhere [1] and
will not be explained in detail in this paper. We will
summarize, however, by saying that relevance reasoning
takes a standing relation (i.e. a goal) from the user,
identifies the portion of the domain knowledge that is
relevant to the standing relation, finds the attributes in the
domain knowledge that must be grounded in input events
and uses these attributes to identify what types of objects
and which of their attributes need to be monitored in the
event stream. With this mechanism, the large number of
objects and attributes in a situation can be pared down to a
more manageable stream of data in which only a
comparatively small number of relevant relations must be
monitored.

2.1 Ontology Representation in OWL
In our current efforts we have been exploring the use of
recent developments for the Semantic Web [2]. In
particular we have chosen to use the Web Ontology
Language OWL [3] for defining ontologies that serve as
the basis for data and knowledge representation within our
situation awareness systems. The advantages of using
OWL includes the fact that it is defined by a formal set of
semantics and that there are a growing number of
automated systems to formally process OWL documents,
including editors, consistency checkers and reasoning
engines [4].
 OWL was designed to capture the classes, properties
and restrictions pertinent to a specific domain. As such,
OWL can capture basic class hierarchies, properties
among classes and data and simple constraints on those
properties and classes. OWL, however, cannot capture all
types of knowledge relevant to a given domain. In
particular, it does not provide a way to represent
arbitrarily complex implications, in which knowledge of
the existence of a collection of facts (X1, X2,…Xn)
implies the truth of some other information (i.e., X1 v
X2v…Xn �Y). For example, there is no way in OWL to

define the relationship of "uncle(X,Y)", which requires
knowing that X is male, X has a sibling Z, and Z has a
child Y. The joining of collections of interrelated facts
into implication rules as illustrated in this example is very
common when defining relationships important to
domains involving situation awareness. We therefore
need the ability to define portions of our domain
knowledge using rules, and for this purpose we have
selected the Semantic Web Rule Language, SWRL [5].

2.2 Rule Representation in SWRL
SWRL is built on top of OWL and, like OWL, has a
formally defined semantics, making it a natural choice for
use in our situation awareness applications. SWRL does,
however, have some shortcomings that make it less than
ideal. Because it was officially introduced as a draft
recommendation in just the spring of 2004, it is relatively
new and is still evolving; this means there are few tools
and applications for use with SWRL and it remains a
moving target which may undergo radical changes that
will introduce inconsistencies for early adopters.
Furthermore, SWRL predicates are limited to binary arity.
While it is possible to represent concepts dependent on
higher-arity relations using SWRL, the process of doing
so significantly complicates the resulting rules, making
them difficult to read and maintain. Still, the advantages
of SWRL justify the exploration of its use for situation
awareness, which can be seen as one of the objectives of
our current work. Our results do not as of yet provide
sufficient evidence on which to fully judge SWRL's future
potential in this area, although we remain optimistic.

2.3 SAW Core Ontology
We are interested in building systems for situation
awareness that are generic in nature. That is to say that
the systems should be applicable to a wide variety of
problem domains simply through the redefinition of the
domain knowledge that they use. For this approach to
work, some core concepts need to be established that will
be used as the basis for the development of specific
domain knowledge ontologies and rule sets. For this
reason we have developed a SAW Core Ontology that
serves as the representational foundation of all domain
knowledge that is built on top of it. We have reported on
this core ontology in earlier papers [6] and will not
describe it in detail here. The key concepts capture by the
ontology are the use of objects that have attributes with
specific values defined by external events that occur over
time; in addition, relations combine pairs of objects with
truth values defined over time by the firing of rules that
define the relations.

3 SAWA High-Level Architecture
The SAWA High-Level Architecture has two aspects as
shown in Fig. 1: a set of offline tools for Knowledge
Management and a Runtime System of components for
applying the domain knowledge to the monitoring of
evolving situations. The knowledge management tools
include an ontology editor, an ontology consistency
checker and a rule editor. The runtime system consists of

a Situation Management Component (SMC), an Event
Management Component (EMC), a Relation Monitor
Agent (RMA), a Triples DataBase (TDB) and a Graphical
User Interface (GUI). The user interacts with the system
through the GUI by issuing standing relations (goals) and
queries. Events from the outside world come into the
runtime system and are processed for redistribution to
other components by the Event Management Component
(EMC).

Fig. 1. SAWA High-Level Architecture.

4 SAWA Knowledge Management
Knowledge Management in SAWA is handled by a
loosely coupled suite of tools for developing and
maintaining OWL ontologies and SWRL rule sets.

4.1 Ontology Editor
The OWL language is based in RDF [7], which has an
XML-based representation. As such, any text or XML
editor could be used to develop OWL ontologies. The
manual coding of OWL is, however, tedious and prone to
error, making specialized editors highly desirable. There
are a number of editors available for OWL [8] but the
most widely used is Protégé [9]. Protégé is a general-
purpose ontology management system developed long
before OWL but for which OWL plug-ins have been
developed. Using Protégé with the basic OWL plug-in
permits the use of Protégé's frame-based editor to
construct OWL classes, properties and restrictions among
them as well as to develop annotations for OWL
ontologies. This approach is adequate but not as
convenient as a graphical editor that allows the visual
display and manipulation of the relations between objects
and properties. Fortunately there is a plug-in for Protégé
called ezOWL that provides a graphical editor on top of
the basic OWL-plugin. All of the ontologies depicted in
this paper are screenshots taken from ezOWL. ezOWL
has its limitations (for example it does not cleanly display
more than two properties between two classes) and does
not always produce correct OWL code, but it is currently
the best available visual editor for OWL and does a
satisfactory job, provided the resulting code is checked for
consistency.

4.2 Consistency Checker
Developing an accurate and consistent ontology is not
easy, particularly as the complexity of the domain
increases. For all but the most trivial problems it is
imperative that newly constructed ontologies be

automatically validated for logical consistency; this is also
invaluable when combining multiple ontologies that may
individually be consistent but are collectively
incompatible. It has been the authors' experience that
seldom is the first design of an ontology complete and
consistent, and the use of consistency checking tools has
saved tremendous amounts of development time. SAWA
includes ConsVISor [10], an OWL/RDF consistency
checker, in its suite of knowledge management tools.
ConsVISor is both a standalone Java application and a
free Web Service provided by Versatile Information
Systems, Inc. at http://www.vistology.com/consvisor.
 ConsVISor's purpose is to analyze OWL and RDF
documents looking for symptoms of semantic
inconsistencies. Not only does it detect outright semantic
violations, it also identifies situations where logical
implications have not been fully specified in a document.
For example, if an ontology places a minimum cardinality
constraint on a property for a specific class and an
instance of that class is created without having the
minimum number of property values. Emphasis is placed
on providing highly informative feedback about detected
symptoms so as to aid the correction of underlying errors
by the human user. ConsVISor's output however is based
on an OWL-based Symptom Ontology [11] and as such
can produce symptom reports in OWL that can be
automatically processed by other OWL-cognizant
programs.

4.3 Rule Editor
SWRL rules in their XML representation are syntactically
and (frequently) semantically difficult to read and write.
It was therefore decided that SAWA needed an easy to use
editor to assist in the construction and maintenance of
SWRL rules. With SWRL being so new, there were no
SWRL editors available and so we decided to implement
one, which we are calling RuleVISor. A screenshot of
RuleVISor being used on a rule set for the Supply
Logistics scenario described in Section 6 is shown in Fig.
2. The rules are displayed along the top left hand side of
the editor in a directory style layout for easy selection and
high-level scanning. The rule that is currently being
edited appears in two forms in the right-hand section of
the editor. At the top of this section is the display of the
contents of the rule head and body in either an easy to
read atomic form, which is shown in the screenshot, or as
raw SWRL code (not shown). Below this display is the
section where editing of the rule takes place, including the
optional naming of each rule. This section is split into a
portion at the top for editing the head followed by a
portion for editing the body. Within either of these the
user has the option of adding or deleting binary atoms,
unary atoms, instances, data value ranges and built-in
functions simply by clicking on the appropriate icons.
Each clause in a rule head or body appears in a three-row
region that provides the name of the atom, the terms it
operates over and possibly other constraints such as term
type restrictions. The values of the terms can either be
typed in by the user or dragged from other areas of the
editor. The primary source for dragged items is the
Ontology Tree that appears in the lower left hand corner.

 The Ontology Tree displays the contents of the
ontologies in whose context a rule set is to be built. Of
most interest here are the Classes and Properties of the
ontology, which are used to populate the term slots of
atoms used in the rule heads and bodies. Class and
Property names may be dragged to any text entry box in
the editor but they will only be accepted by the box if the
value being dragged matches the type that the box
expects. This form of primitive type checking represents
the beginning of a much more sophisticated policy for
consistency checking based on ConsVISor that is planned
for a future version of RuleVISor.
 RuleVISor is currently in beta testing (contact the
authors if you are interested in testing RuleVISor) but has
been used extensively for rule development purposes by
the authors and has proven to be a great time saver over
the manual editing of SWRL rules. Perhaps the biggest
advantage afforded by RuleVISor is the ability to deal
with rule definition at a conceptual level that abstracts out
the syntactic complexities of the XML-based
representation of SWRL. RuleVISor also assists with the
generation of Jess rules as it has a built in translator that

understands some of the more subtle complexities of
converting from SWRL to Jess.

5 SAWA Runtime System
The SAWA Runtime System, also called the SAWA
Engine, is depicted in Fig. 3 along with the
communication channels between its sub-components.
SAWA is implemented in Java, includes Jess as the basis
for its reasoning functions and uses our proprietary
RDF/OWL/XSD parser. The SAWA Engine consists of
the following sub-components: the Situation Management
Component (SMC) which is the system's central
controller, the Event Management Component (EMC)
which processes all incoming events, the Relation
Monitoring Agent (RMA) which monitors relevant events
for the status of relations occurring in the evolving
situation, the Triples DataBase (TDB) which maintains a
historical record of all situation events and permits the
processing of queries, and the Graphical User Interface
(GUI) which handles all user interaction with the system.
The function of each of these components is described
further in the subsections that follow.

Fig. 2: RuleVISor.

.

Fig. 3: SAWA Runtime System.

5.1 Situation Management Component
The Situation Management Component (SMC) is the
central controller for SAWA. It interacts with the GUI to
provide options to the user and to accept the user's
commands to start, stop and query situations. In addition,
it serves as the communication channel between the GUI
and the TDB and RMA. The SMC initializes the
monitoring of situations by instructing the EMC to start
listening to specific event streams and informs the RMA,
TDB and GUI how to connect to the EMC to receive their
appropriate streams of processed events. The SMC is also
responsible for performing relevance reasoning and for
passing the appropriate set of relevant rules to the RMA
and the set of relevant objects and attributes to the EMC.

5.2 Event Management Component
The Event Management Component (EMC) receives
streams of raw event data and converts them into
appropriate streams of events for the GUI, RMA and
TDB. Each of these components receives a specific type
of event stream: the RMA only receives relevant events
encoded as Jess-formatted triples; the TDB receives all
events in the form of OWL triples; the GUI receives
relevant events in the form of object-attribute instances.
The raw input streams are expected to be annotated using
an event ontology with references to objects defined in the
core ontology and the appropriate domain ontology. The
event ontology currently being used in SAWA is shown in
Fig. 4. This event ontology is known only to the EMC

which converts all event information into appropriate
structures for the other components; the isolation of the
other components from the event ontology was done so as
to permit the use of other event ontologies dependent upon
the source of the event streams (which at this time is a
simulator of fused level-one object data).

5.3 Relation Monitoring Agent
The Relation Monitoring Agent (RMA) performs the task
of monitoring the stream of relevant events and detecting
the truth-value of relevant relations that might exist
between objects occurring in the evolving situation. The
RMA performs this task using the relevant rules defined
by the domain knowledge in conjunction with the standing
relation. These relevant rules are processed in the
forward-chaining Rete network of a Jess inference engine.
As events come in, they are processed through the Rete
network and as a result may end up firing one or more
rules. The firing of a rule results in the instantiation of a
relation that is then reported to the GUI via the SMC. At
the moment all rule firings result in relations that have an
associated certainty rating of 1.0 (i.e., 100%). We are
working on a new implementation of the reasoning engine
that will incorporate uncertainty reasoning and will thus
afford the detection of relations having incomplete
certainties.

5.4 Triples Database
In RDF and OWL all information is represented in the
form of triples. Each triple represents a predicate that
relates a subject to an object. For example, to state that S2
is a SupplyStation requires a triple of the form: S2
rdf:type SupplyStation. More complex knowledge
structure can be represented using collections of
interrelated triples (see [12]). The triples representing the
domain knowledge, user input and the incoming events all
need to be maintained in a way that they can be readily
processed. In SAWA this is accomplished through the
Triples DataBase (TDB).
 The TDB's primary purpose is to maintain an accurate
history of all events so that they can be queried by the user
at any time. It is currently developed on top of Jess and
makes use of Jess' built-in query capabilities to implement
an engine for OWL-QL: OWL Query language [13]. The
TDB also supports "what-if" queries in which a set of
hypothetical facts are asserted, a query is run to produce
what-if results, and the hypothetical facts are retracted
along with all facts deduced from them. The TDB
accomplishes this what-if capability using the "logical"

Fig. 4. Event Ontology.

retraction feature of Jess. While both the general query
mechanism and the what-if query mechanism work as
designed, they are quite inefficient and not particularly
suited for new real-time operations. Consequently we are
in the process of developing our own inferencing and
query engine optimized for the processing of triples.

5.5 Graphical User Interface
The Graphical User Interface permits the user to define
standing relations, execute queries and monitor the current
state of events, objects, attributes and relations. Its use on
a Supply Logistics scenario (described in the next section)
is illustrated in Fig. 5.

6 A Supply Logistics Scenario
SAWA is currently being applied to the domain of supply
logistics. A simple scenario based on the concept of
supply lines has been constructed for the purposes of
demonstrating the basic system functions. The goal or
"standing relation" for this scenario is to constantly
monitor the relation "hasSupplyLine" for all friendly
units. A supply line is defined as the existence of a
continuous path of roads under friendly control connecting
a unit (e.g., B5, B6, etc.) to a supply station (e.g., S1).
The specific layout for this scenario can be seen in the
map display in the GUI screenshot in Fig. 5. Roads
connect pairs of regions (their centroids indicated by solid
dots). There are six friendly blue units (i.e., B5, B6, B7,

B9 and S1), including one supply station (S1), and one
unfriendly red unit (R1).
 The screenshot in Fig. 6 shows the simple supply
logistics ontology that goes along with this scenario. Note
that all of the classes in this ontology are implicitly sub
classes of the Object class in the SAW Core Ontology
described in Section 2.3 - this is necessary for the domain
specific ontology to work with the otherwise generic
mechanisms of the SAWA Engine. Note also that this
ontology is a gross simplification of what would be
expected for a more complete ontology necessary to
support more practical supply logistics scenarios (which
the authors are currently working on). This ontology was
created using ezOWL, which produced the screenshot
shown in Fig. 6 as well as the OWL code used in the
running of the scenario.
 The rule set developed for this scenario is partially
shown in the screenshot of RuleVISor in Fig. 2. These
rules define that a unit hasSupplyLine if the unit is in a
region that isSuppliable. A region isSuppliable if it
hasSupplyStation and is underFriendlyControl or if it is
connected to another region by a Passable road and that
other region isSuppliable. A region is
underFriendlyControl if it contains a friendly unit. A
region hasSupplyStation if the region contains an object
and that object is a supply station (note that this rather
obvious sounding rule is an implication that cannot be
readily captured in OWL alone).

Fig. 5. The SAWA GUI.

Fig. 6. Simple Supply Logistics Ontology.

To simulate the running of the scenario several snapshots
were developed as OWL annotations to define the state of
the world at sequential time slices. In each time slice one
of the units was moved in such a manner as to create
changes in the set of relations that would hold true. These
snapshots were then presented to a running SAWA
application in which the user specified the standing
relation to be hasSupplyLine applied to all friendly units.
The system correctly detected the standing relations that
held true at each time slice and reported these back to the
GUI for display to the user; the GUI screenshot in Fig. 5
shows the display after a couple of time steps.

7 Conclusions: Lessons Learned
In the process of developing SAWA we encountered a
number of challenges. Paramount among these were 1)
the practical application of emerging Semantic Web
technologies, 2) the need to represent and reason about
time and 3) the difficulties of dealing with uncertainty as
it propagates through the reasoning processes.

7.1 Semantic Web Technologies
We have found ontologies to be invaluable for
representing and reasoning about knowledge pertinent to a
situation’s domain. OWL, along with the formal reasoning
techniques that have been developed around it, represents
the state of the art in ontologies. That being said, OWL is
not without its limitations when viewed from a system
implementer’s perspective. Foremost among these is the
restriction to binary properties, which comes from its
foundation on RDF triples. While it is possible to
represent higher-arity relationships through the use of
reified statements [14] this process is cumbersome and
necessitates greater care in ontology design and
implementation. Another issue with the language is the
lack of the ability to perform joins across multiple entities.
This problem means you are unable to constrain a
property’s object values based on the properties those
objects possess. As illustrated earlier, there is no way to
fully represent the property of uncle(X,Y) in which you
would want to constrain X to being the brother of some
other person who is the parent of Y. To obtain this sort of

expressive power requires the use of a more powerful
language containing the ability to perform implications.
 SWRL provides this capability for representing
implication through the use of rules and is explicitly
designed as an extension to OWL. SWRL is a more
recent development and therefore is more prone to updates
and changes; furthermore, there are scant few systems
currently supporting the language. This is a real problem
because the language is rather verbose in its XML syntax,
making it difficult to read and write by hand. SWRL also
retains the restriction to binary properties, which can make
relatively simple rules much more complicated. For
example, we considered a rule that could be used to tell
whether a given unit had on hand a specific type of supply
at some point in time. The head of such a rule might look
as follows: onHand(Unit, Supply, Time). Because this is
a ternary relationship it was necessary to create a reified
statement with multiple properties each appearing as a
separate atom in the rule head; as a result the intended
meaning of the rule was difficult to identify without
significant analysis. Although developing rules of this
sort is possible, and is amenable to automation, it
currently makes the creation and maintenance of SWRL
rules very challenging, relegating them to consideration in
advanced research efforts. We envision future remedies
for many of the challenges that currently exist when
applying OWL and SWRL to practical situation awareness
applications, and we are ourselves working on some of
these. We remain confident that in time Semantic Web
technologies will become integral parts of future situation
awareness systems.

7.2 Reasoning about Time
One of the most distinguishing characteristics of real-
world situations is the aspect of time. It is also arguably
the biggest challenge. What we would like to be able to
do is have perfect knowledge of the state of all relevant
objects at all times. This is clearly impossible in all but
the most trivial situations. We are thus left having to work
with streams of events in which partial snapshots of the
world are received, likely in the form of object-attribute
values, perhaps with some indication of the degree of
certainty to ascribe to each value. From this collection of
information received at various times we must piece

together a picture of what is actually happening at the
current moment, and what might happen in the future.
 The real problem is that while some things stay
relatively static the more interesting ones are dynamic and
continue to change after they have been sensed. SAWA
was designed to work on the Level 2 problem of
identifying higher order relations (e.g., aggregation,
group-wise activity, attacking) but in order to do this it
became necessary to model the behavior of dynamic
objects. What we really needed was a Level 1 system able
to handle object modeling which SAWA could query at
any moment for the current state of an object.
Unfortunately none was available and we were forced to
address this problem ourselves. It was much too
inefficient to attempt to model objects using the rule-
based engine SAWA uses for higher-level reasoning. Our
work around solution to this problem was to implement a
“currentValue()” built in function in our rule language
which permits the value for a dynamic object to be
estimated at any point in time. The calculations are done
using simple dynamic models defined for each object in
the domain ontology and implemented in the engine’s
native language (Java). The calculations are always based
on the most recent observation for the value (there is no
merging of predicted values with observed values –
observed values are always assumed to be definitive).
 This approach is far from ideal and we would much
rather have SAWA focusing on what it does best (i.e.,
reasoning about relations) rather than modeling Level 1
dynamics. One advantage this approach did afford,
however, was that it makes it possible to extrapolate
values into the future as easily as to estimate their current
values. The consequence is that, with all dynamic
projections, the certainty of the values decreases the
further away one gets in time from the observation point.

7.3 Managing Uncertainty
Uncertainties in sensed values pose several challenges for
situation awareness systems. Although we know they
inherently exist it is not always possible to have them
measured or reported with the values; even when they are
reported, their precise meaning is often ambiguous. But let
us assume we are able to obtain certainty measures and
they have some well-defined semantics. In a reasoning
system like SAWA the question arises as to how to
propagate the certainty measures through the logical
stages of reasoning. In our rule-based system this requires
a way of calculating the certainties of the rule conclusions
based on the certainties present in the values in the body.
After considering various possibilities we decided on a
Bayesian approach. The challenge here was how to
implement the approach without overly complicating the
development of the rules by the domain expert. Our goal
was to permit the user to write ordinary (non-
probabilistic) rules and have the system handle the
propagation of certainty measures automatically behind
the scenes. On the other hand the user should also be able
to provide prior probabilities and conditional dependency
tables if necessary and possible. In either case the
propagation of certainty should be carried out with as
much information as is available. In order to do this we

would need to embed the Bayesian reasoning deep within
the inference engine. For this reason we have
implemented our own proprietary Rete-based inference
engine and have begun adding support for the Bayesian
propagation of certainty.

Acknowledgements
This work was partially funded by the Air Force Research
Laboratory, Rome, New York under contract numbers
F30602-02-C-0039 and F30601-03-C-0076.

References
[1] C. Matheus, K. Baclawski and M. Kokar, Derivation

of ontological relations using formal methods in a
situation awareness scenario. In Proc of SPIE
Conference on Multisensor, Multisource Information
Fusion, pages 298-309, April 2003.

[2] T. Berners-Lee, J. Hendler and O. Lassila, The
Semantic Web: A new form of Web content that is
meaningful to computers will unleash a revolution of
new possibilities. Scientific American, May 2001.

[3] OWL Web Ontology Language Reference. W3C
Recommendation 10 February 2004.
http://www.w3.org/TR/owl-ref/.

[4] http://www.w3.org/2004/OWL/.
[5] SWRL: A Semantic Web Rule Language Combining

OWL and RuleML. W3C Member Submission, 2004.
http://www.w3.org/Submission/SWRL/.

[6] C. Matheus, M. Kokar and K. Baclawski, A Core
Ontology for Situation Awareness. In Proceedings of
FUSION’03, Cairns, Queensland, Australia, pages
545-552, July 2003.

[7] Resource Description Framework (RDF) Concepts
and Abstract Syntax.. W3C Recommendation 10
February 2004. http://www.w3.org/TR/rdf-concepts/.

[8] European OntoWeb Consortium, A Survey of
Ontology Tools, May 2002. http://ontoweb.aifb.uni-
karlsruhe.de/About/Deliverables/D13_v1-0.zip.

[9] J. Gennari, M. A. Musen, R. W. Fergerson, W. E.
Grosso, M. Crubézy, H. Eriksson, N. F. Noy, S. W.
Tu The Evolution of Protégé: An Environment for
Knowledge-Based Systems Development. 2002.

[10] K. Baclawski, M. Kokar, R. Waldinger and P. Kogut,
Consistency Checking of Semantic Web Ontologies.
1st International Semantic Web Conference (ISWC)},
Lecture Notes in Computer Science, LNCS 2342,
Springer, pp. 454--459, 2002.

[11] K. Baclawski, C. Matheus, M. Kokar, J. Letkowski
and P. Kogut, Towards a Symptom Ontology for
Semantic Web Applications. In Proceedings of Third
International Semantic Web Conference, Hiroshima,
Japan, pages 650-667, November, 2004.

[12] RDF Primer. W3C Working Draft. Edited by F.
Manola and E. Miller, 2002.
http://www.w3.org/TR/rdf-primer/.

[13] OWL-QL: OWL Query Language, 2003.
http://ksl.stanford.edu/projects/owl-ql/

[14] Defining N-ary Relations on the Semantic Web: Use
With Individuals. July 2004, Noy and Rector (eds).

